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algorithm iterations until we have collapsed the infinite loop that encapsulates the schedule

period.

Figure 28(b) illustrates the construction of the first-reaches table based on the method pre-

sented in this appendix.

Schedule: ((2HJKJHK)HJ(3KJH)))

Λ1 = (2HJKJHK)

in(H1) = ∅
in(J1) = {H1} φ(H1,J1)=T

in(K1) = {J1}

in(J2) = {J1,K1}

φ(J1,J2)=T

φ(K1,J2)=T

in(H2) = {J2}

in(K2) = {J2,H2}

J-first(Λ1) = J1

J-out(Λ1) = out(K2) = {J2,H2,K2}

S2 = (Λ1HJ(3KJH))

Λ2 = (3KJH)

in(K3) = ∅
in(J4) = {K3} φ(K3,J4)=T

in(H4) = {J4}

J-first(Λ2) = J4

J-out(Λ2) = out(H4) = {H4,J4}

S3 = (Λ1HJΛ2)

Λ3 = (Λ1HJΛ2)⇒ (∞ Λ1HJΛ2)

in(Λ1) = ∅ φ(J2,J1)=T

φ(H2,J1)=T

φ(K2,J1)=T

in(H3) = {J2,H2,K2}

in(J3) = {J2,H2,K2,H3}

φ(J2,J3)=T

φ(H2,J3)=T

φ(K2,J3)=T

φ(H3,J3)=T

in(Λ2) = {J3}

φ(J3,J4)=T

φ(H4,J4)=T

φ(J4,J4)=T

J-first(Λ3) = J-first(Λ1) = J1

J-out(Λ3) = out(Λ2) = {H4,J4}

S4 = Λ3

in(Λ3) = ∅
φ(H4,J1)=T

φ(J4,J1)=T

Fig 28. An illustration of how the first-reaches matrix is constructed. For the schedule in
part(a), part(b) shows step-by-step how the relevant reachability information is extracted
to construct the columns of φ associated with actor J.

(a)

(b)
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else

out(Ci) = in(Ci) ∪ {Ci}

if i ≠ r then in(Ci+1) = out(Ci)

These rules are summarized in figure 27(a) and 27(b). Observe that we can describe in(Ci)

as the set of CCSS’s in Λ1 which reach Ci before they reach a CCSS for A*. Thus when we

encounter a CCSS CA associated with A*, we set each entry in column CA of φ that corresponds to

an element of in(CA).

After processing Λ1 in this manner, we “collapse” the body of Λ1 into a single loop-CCSS

in S. For example, if S = (2A(3 CBA))1 and Λ1 represents the loop (3CBA), then we collapse Λ1

to obtain the hierarchical schedule S1 = (2AΛ1). We associate two parameters with Λ1: A*-

first(Λ1), which denotes the lexically-first CCSS for A* in Λ1 (if A* does not appear in Λ1 then we

write A*-first(Λ1) = ∅); and A*-out(Λ1), which simply denotes out(Cr). For example, suppose that

S is the looped schedule shown in figure 28(a). Let H1, H2, H3 and H4 denote the CCSS’s corre-

sponding to successive appearances of H in the looped schedule, and similarly define CCSS’s J1,

J2, J3, J4 and K1, K2, K3 (recall that for SDF actors, subscripts denote invocation numbers, so we

use superscripts to label CCSS’s). Now suppose that A* = J and Λ1 denotes the loop (2HJKJHK).

Then A*-first(Λ1) = J1; A*-out(Λ1) = {H2, J2, K2}; and S2, the loop hierarchy for the next algo-

rithm iteration, is (Λ1HJ(3KJH)).

In the algorithm iteration corresponding to schedule Si (i ≥ 2), we select one of the remain-

ing innermost loops from Si. This loop Λi contains only actor appearances and collapsed loops

(members of {Λ1, Λ2, …, Λi-1}). We process these elements of Si using the construction rules of

figure 27(a) and 27(b) for actor appearances (CCSS’s). For each collapsed loop Λ, we apply the

rules shown in figure 27(c) instead. Here, rule (2) is required to capture the reachability informa-

tion associated with successive iterations of Λ, whereas rule (1) corresponds to the flow path

entering Λ. After applying the appropriate construction rules to each component of Λi, we col-

lapse Λi in Si to obtain Si+1, the schedule for the next algorithm iteration. We proceed through

1.  The outermost parenthesis represents the infinite loop that encapsulates the schedule period.
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• in(C1) = ∅.

• for i = 1, 2, …, r:

if actor(Ci) = A*, then

(1) ∀ η ∈ in(Ci), set φ(η, Ci) to “T”

(2) out(Ci) = {Ci}

C

actor(C) ≠ A*

out(C) = in(C) ∪ {C}

C'

actor(C') = A*

out(C') = C'

∀ x ∈ in(C'), φ(x, C') = T

A*- first(Λ)

A*- out(Λ)

C1

C2

C r

·•
·•·
•

A* -first = the lexically first

CCSS of A* in Λ
A*-out = out(C r)

if A*-first ≠ ∅
(1) ∀ x ∈ in(Λ), φ(x, A*-first) = T

(3) out(Λ) = A*-out
else

out(Λ) = in(Λ) ∪ A*-out

Loop Λ

(b)

(c)

Fig 27. This  figure summarizes how the loop structure is hierarchically analyzed to con-
struct the first-reaches table. Parts (a) and (b) correspond to CCSS’s in an innermost loop,
and part (c) shows how an inner loop is consolidated into a single block CLin the CCSS
flow graph. The pseudocode segment in (c) specifies how CL is handled when its encap-
sulating loop is examined.C1, C2, …, Cr each represents a CCSS or a consolidated loop.

(2) ∀ x ∈ A*-out, φ(x, A*-first) = T

(a)
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been presented. Many of these, such as handling loops, determining buffer parameters, and com-

puting wrap-around accesses will apply frequently, while the importance of various other tech-

niques — e.g. decomposing dynamic buffer components and applying the first-reaches matrix —

is very problem-specific. For example, if minimizing chip area is critical, it may be necessary to

overlay buffers as much as possible. However, since thorough exploitation of buffer period infor-

mation is computationally expensive (although not combinatorial), a robust compiler should not

attempt it if it is not necessary.

 We envision that the large number of specialized optimization strategies introduced in this

paper can be best applied within a knowledge-based, goal-oriented framework, such as DES-

CARTES [27]. We are currently designing such a framework for optimized code generation of

multirate signal processing systems. The implementation platform is Ptolemy, an object-oriented

prototyping environment for heterogeneous systems [5].

We are also pursuing the incorporation of our memory management strategies into the

scheduling process.

9 Appendix

In this appendix, we show how to systematically compute the first-reaches table, which

was introduced in section 4. Our technique is an adaptation of the method described in [1] for

determining reaching definitions. Let G denote an SDF graph; let S denote a looped schedule for

G; let φ(•, •) denote the corresponding first-reaches table; and recall that for any two CCSS’s X

and Y associated with G and S, φ(X, Y) = T if and only if there is a control path from X to Y that

does not pass through another CCSS for Y. Also, for any CCSS X, let actor(X) denote the actor

associated with X — i.e. the actor for which X is a CCSS.

Figure 27 summarizes how to determine the columns of φ that correspond to an actor A* in

G. We start by examining some innermost loop Λ1 of S (by “innermost loop”, we mean a loop in

which no other loops are nested). Let C1, C2, …, Cr denote the CCSS’s encapsulated by Λ1 in lex-

ical order. We process each Ci according to the following construction rules:
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delay. This arc represents the address of the current insert-position in the buffer of past samples,

which must be maintained from invocation to invocation (for more details, see [15]).

Although a big improvement, this scheme still involves overhead — replicating each new

input sample and maintaining the internal circular-buffer pointer. We can eliminate this overhead

simply by ensuring that the Nth sample produced on the input arc of the FIR is never overwritten

before the (N+n)th sample is consumed. This can be guaranteed by making sure the buffer size is

at least n greater than the maximum number of coexisting live samples. Thus, each FIR invoca-

tion can read all past samples directly from the buffer associated with the input arc, and no repli-

cation is necessary.

This technique applies to any actor which references past samples. The requirement for

past samples can be specified by annotating each SDF arc with an additional parameter — the

number of past samples required by the sink. Allowing successive invocations to process overlap-

ping “windows” of input samples in this manner also increases the exposure of data parallelism

(for details, refer to [27]).

8 Conclusion

Until recently, in the domain of signal processing, graphical programming was primarily

used in the context of simulation and developing software for applications with modest perfor-

mance requirements. When performance requirements approached the limits of the target proces-

sor, implementers had to resort to manual programming at the microcode level. However, recent

progress in dataflow theory and in compiler technology for dataflow programming now allows

compilers for graphical DSP languages to approximate meticulous manual coding for single sam-

ple-rate applications.

Although the representation of multirate algorithms as dataflow graphs is well-understood,

compiler techniques must be augmented to efficiently manage the iteration and large buffering

requirements associated with the multirate case. This paper approaches these problems in a uni-

fied manner and develops systematic solutions. A large number of optimization techniques have
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actors by the techniques discussed in this section, the compiler should verify compatibility with

the loop organization.

Also, if we implement these optimizations by augmenting the language, then we should

clearly consider only functions that will be used frequently. However, the ideal solution is to

allow the user to define such actors in a programmable fashion. This would allow special-purpose

non-computational blocks to be implemented efficiently — for example, an actor that reverses the

elements in an array. Supporting this generally requires a significant innovation in the program-

ming model.

In this section, we have presented a class of optimizations for SDF programs based on

suppressing the duplication of data by actors that do not perform any computations. There is

another widely applicable code optimization that is closely related, and that also requires a devia-

tion from strict SDF semantics — this involves actors whose outputs depend on previously con-

sumed input samples. Probably the most prevalent example of this in DSP applications is the FIR

filter. Figure 26 shows one SDF topology for an nth order FIR filter. Here, the homogeneous input

arc represents the next sample in the input sequence and the self loop represents the state associ-

ated with the FIR block — these are the last n−1 samples of the input sequence. However directly

applying this model to compilation would result in 2n buffer accesses per invocation! A far pref-

erable solution is to have the code block for the FIR manage the buffering of past samples [15].

This simply involves maintaining a circular buffer of length n − 1, where each invocation copies

the new input sample into the last position, overwriting the oldest buffered sample. In terms of

dataflow, this implies replacing the self-loop of figure 26 with a homogenous arc containing unit

FIR (n−1)D

n − 1
1

1

Fig 26. Graphical representation of an nth order FIR filter block.

n − 1
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save four move instructions over the conventional implementation of B. If however, we have the

looped schedule (3AB)(4C) then it is difficult to apply this optimization. This is because the

advances of Crp do not occur in lockstep with the loop Lc that encapsulates C. In particular, if C

reads directly from the buffer for A↑B, then Crp advances after the 4th, 8th and 12th read

accesses. These correspond respectively to the first access in the second iteration of Lc, the second

access in the third iteration of Lc, and the third access in the fourth iteration of Lc. Thus we must

test the iteration count after each access to determine whether or not to advance Crp, which will

most likely be less efficient than making four physical copies of each input sample to B.

Figure 25 depicts three other common non-computational actors that can be implemented

efficiently as “macro buffers” only if the looping structure permits it. Before “optimizing” such

A B C
1 1 4 3

Fig 24. An illustration of how looping can complicate the optimization of non-computational
blocks. Here, “B” represents a repeat actor that consumes one sample and produces four
copies of it on its output arc.

X1

X2
• ••

Y1

Y2
•••

X1

Y1

X2

Y2
••
• X1

X2

X3

X4
••
•

X1

X3
• ••

X2

X4
•••

X1

X2

X3

X4
••
•

X1

X3

••
•

downsample
(by factor of 2) commutator distributor

Fig 25. Three useful actors that do not perform operations on their data. “Downsample by
factor of n” outputs one out of every n samples consumed. A “commutator” interleaves
samples from each input arc onto its output arc; and the “distributor actor” outputs alter-
nate input samples to alternate output arcs.

2

1

1 1

2

2

1 1
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this scheme. The only additional consideration is that the “macro-buffer” associated with Ψ must

be large enough so that a sample is never overwritten before it has been consumed by all destina-

tion invocations. The required minimum buffer size is simply the maximum number of coexisting

live samples that can exist on any of Ψ’s output arcs. The techniques presented in the previous

sections of this paper can be extended straightforwardly to the macro-buffers associated with fork

instances.

We can apply similar optimizations to various other actors that do not perform any opera-

tions on their inputs. However, looping often introduces complications. For example, consider the

repeat actor, which consumes a single sample and replicates this sample n times on its output arc.

Figure 24 shows the connection of such an actor (node B, with n = 4) to a sink (node C) that con-

sumes three samples per invocation. If there is no looping, we can implement Β↑C efficiently by

having C’s read pointer Crp point directly into the buffer for Α↑Β and advancing this pointer after

every four accesses. Thus no run-time code would be required for the upsample and we would

A Ψ

B

C

code for “A”
output in x0

move x0, y0
move x0, y1

code for
“Ψ”

code for “B”
input in y0

code for “C”
input in y1

code for “A”
output in x0

code for “C”
input in x0

code for “B”
input in x0

1 1
1

1

1

1

Fig 23. Optimizing the buffering for the fork actor.
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Λ performs no more than BUFSIZE accesses of b, then we can float the corresponding modulo

address computation outside of the loop.

7 Deviating from Dataflow Semantics

The most natural way to compile a dataflow program is to implement each arc as a distinct

contiguous block of memory. The production of a sample onto an arc then corresponds to a write

into a distinct physical location; and at any given time, there is a one-to-one correspondence

between live samples and physical storage locations. We have already shown how modifying this

strictly dataflow-based approach to include register allocation and buffer overlaying can improve

target code efficiency. For a certain class of actors, a further modification is useful — suppressing

the duplication of coexisting samples that have the same value.

Probably the most obvious and most frequently-used example is the fork actor, which con-

sumes one input sample and replicates the value of this sample on each of its output arcs. Figure

23 shows a simple illustration of how implementation of fork can be optimized. Here, Ψ repre-

sents an instance of a 2-output fork; A represents an arbitrary homogeneous source actor; and B

and C each denote arbitrary homogeneous sinks. The lower left side of the figure shows an outline

of Motorola DSP56000 code to implement the graph if Ψ is treated like any other actor (the code

outline assumes that register allocation has been performed accross the homogeneous buffer

accesses). Since the code associated with Ψ simply copies data, we can eliminate move instruc-

tions by having B and C read their inputs directly from the output buffer of A. An outline of the

resulting code is shown in the lower right side of figure 23. Observe that no extra instructions are

required to implement Ψ.

The easiest way to automate this optimization is to make the compiler recognize fork as a

special actor — we incorporate fork into the language. For each instance Ψ of fork, the compiler

generates a single logical buffer to implement all of the arcs connected to Ψ. A single write

pointer into this buffer is associated with the source of Ψ’s input arc, and the sink of each output

arc is allocated a distinct read pointer. Thus no run-time code is required to implement the fork,

except for possible swapping of buffer pointers. Furthermore looping creates no complications for
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For a given buffer access instruction sequence, the corresponding machine instructions

must perform a modulo address computation if and only the associated access set Ia intersects the

set of wrap-around accesses, i.e. iff Ia ∩ Sw ≠ ∅. In practice, however we do not need to explic-

itly compute and maintain Sw nor the access sets associated with each buffer access instruction

sequence. We simply simulate the buffer activity, traversing the buffer access instruction

sequences in succession, for one schedule period and apply theorem 3 for each access. If Φ

denotes the current buffer access instruction sequence in our simulation, and the current access is

the jth access of arc α by actor A, then we mark Φ as requiring a modulo computation if

[delay(α) + (j − 1) ] mod gcd(TNSE, BUFSIZE) = gcd(TNSE, BUFSIZE) − 1.

All buffer access instruction sequences which are not marked by this simulation can be translated

into simple linear address updates.

6.3 Moving Modulo Address Computations Outside of Loops

Frequently, the wrap-around access for a multirate modulo buffer occurs during the last

access associated with each invocation of some schedule loop, allowing us to float the modulo

address computation outside of the loop. We illustrated this effect earlier in the example of figure

12. Such situations normally arise through one of two mechanisms. First, when there is no delay

on an arc α, optimally looping the firings of source(α) and sink(α) often requires that a loop

encapsulate a number of accesses of α equal to the minimum buffer size. The details of this mech-

anism are beyond the scope of this paper. Second, when there is a delay on α, and the buffer size

matches the number of accesses performed by some encapsulating loop Λe, then the modulo

access associated with sink(α) can be moved outside of Λe (this is the case in figure 12). The

modulo computation for source(α) must remain inside Λe since, due to the delay, the wrap-around

access is not the last access of α by source(α) in an invocation of Λe.

 We can detect such opportunities in conjunction with the buffer simulation used to elimi-

nate modulo address computations. For each invocation of a loop Λ, we record the last offset at

which this loop invocation accesses each buffer. If at the end of the simulation, we find that each

invocation of Λ accesses buffer b at the last position (offset BUFSIZE − 1), and each invocation of
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space set associated with an instance of this actor will have two buffer access instruction

sequences. For instance, for the schedule in figure 22(b), there are four distinct buffer accesses

instruction sequences associated with A’s connection to B↑A. If we order them lexically, then the

first two correspond to the first appearance of A in the schedule, and these represent access sets

{1, 3} and {2, 4}; the other two correspond to the second appearance of A, and the associated

access sets are {5, 7, 9, 11} and {6, 8, 10, 12}.

X1X2

A

clear pseudoregister1 ; initialize the sum

repeat 2 ; start of loop

move input.i++, pseudoregister2 ; consume the next input sample (X1 or X3)

move input.i++, pseudoregister3 ; " " " " " " (X2 or X4)

sub pseudoregister2, pseudoregister3 ; compute the difference

add pseudoregister3, pseudoregister1 ; update the sum

end-repeat ;

mult 0.5, pseudoregister1 ; divide the sum by two

move pseudoregister1, output ; output the result

X3X4 0.5 { (X1 − X2) + (X3 − X4) }

Fig 22. An illustration of distinct buffer access instruction sequences.

AB

12 4

13

4D

2D

Schedule: AB(2A)

(a)

(b)
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As we will show in the following subsection, if we assume that the schedule is fixed, we

can efficiently eliminate unnecessary modulo address computations using theorem 3 alone

— without explicitly computing Sw. However the technique described here for determining Sw

should be kept in mind for advanced optimizations which attempt to reorganize the schedule to

improve code efficiency. Such techniques might include, for example, selectively unrolling intra-

actor loops or schedule loops to isolate modulo address computations. This would require explicit

knowledge of each wrap-around access. Incorporating modulo buffer analysis — as well as the

other techniques in this paper — into scheduling is an unexplored, but in the authors’ estimate,

promising area of research.

6.2 Applying the Set of Wrap-Around Accesses

In the absence of looping, the number of modulo computations required in the target code

is exactly the number of elements in Sw. However, loops may cause the same physical instructions

to perform both wrap-around accesses and linear accesses. In such cases, we must either unroll

the loop to isolate the accesses that wrap around, or we must perform a modulo access computa-

tion for every access that is executed from within the loop. We do not pursue the issue of unrolling

in this paper; it is a topic that our research has not yet addressed. Instead, we focus on analyzing

the loop structure to eliminate modulo accesses while leaving the loops intact.

To eliminate unnecessary modulo address computations for the read or write accesses per-

formed by some actor A from/to an arc α, we first identify the set of distinct physical instruction

sequences, called buffer access instruction sequences, that will be used to access α by A. This is

analogous to common code space sets, which associate blocks of program memory with actor

invocations. However the buffer access instruction sequences depend on intra-actor loops as well

as schedule loops. For example, consider the actor definition in figure 22(a), in which the input arc

is accessed through a loop of two iterations. Here “input.i++” specifies the next sample in the

buffer. Thus the first move statement consumes the first and third input samples in successive iter-

ations of the loop, and the second move consumes the second and fourth input samples. Each of

these move statements corresponds to a separate buffer access instruction sequence, since each

must be translated to a separate instruction or sequence of instructions. Thus every common code
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This check can be further simplified by observing the periodicity of the modulo term

above — we need only determine the first wrap-around access jw explicitly:

jw = gcd(TNSE, BUFSIZE) − [delay(α) mod gcd(TNSE, BUFSIZE)].

Then we immediately obtain the complete set of wrap-around accesses Sw:

Sw= Sw(α, BUFSIZE) = { jw + n × ws n ∈ {0, 1, …, ws× floor[(TNSE − 1) / ws] },

where ws = gcd(TNSE, BUFSIZE) denotes the window size.

For the example of figure 21 we have jw = 5, and Sw = {5, 10, 15}. Code to implement

these accesses must perform modulo address computations.These modulo computations will cor-

respond to wrap-around accesses only one-third of the time. However, unless we increase the

blocking factor, which would in turn increase TNSE, we must ensure that these accesses are

always performed with modulo updates. In general, modulo computations will wrap around 1 out

of every nw = BUFSIZE / gcd(TNSE, BUFSIZE) times, and we can reduce the number of modulo

computations by a factor of nw if we increase the blocking factor to nw. However, the resulting

explosion in code space renders this optimization impractical except for extremely simple exam-

ples.

Note that the above developments apply to static buffering as well. In this case ws =

gcd(TNSE, BUFSIZE) = BUFSIZE and nw = 1, so each mandatory modulo computation always

corresponds to a wrap-around access. Observe also that for both static and dynamic buffers, the

number of modulo computations required depends on the choice of the buffer size. Clearly 1 out

of gcd(TNSE, BUFSIZE) accesses requires a modulo computation. Thus the modulo overhead

varies (neglecting looping considerations) inversely with gcd(TNSE, BUFSIZE). For example in

figure 21, a 7-word buffer can support the given schedule. However, this requires 15 / gcd(15, 7) =

15 modulo computations per schedule period — every access must perform a modulo update!

Increasing the buffer size to 10 results in 5 times fewer modulo computations. Thus, for critical

sections of the code, it may be beneficial to explore tolerable increases in buffer size for the possi-

ble reduction of modulo updates, particularly when the cost of the modulo update is high.
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Now let ws denote gcd(TNSE, BUFSIZE), the size of each window. Also let nw = BUF-

SIZE / ws, the number of windows. Suppose that in the first schedule period, access i occurs at

offset j of window w (assume now that offsets and windows are numbered starting at 0). Then the

window number of the ith access in some later schedule period k can be expressed as (w + kTNSE/

ws) mod nw. This is simply the initial window number plus the number of windows traversed

modulo the number of windows. To this expression, we can apply lemma 2 with p = TNSE/ws =

TNSE/gcd(TNSE, BUFSIZE); q = nw = BUFSIZE/gcd(TNSE, BUFSIZE); and r = w. Interpreting

this result, we see that for each window w*, there will be schedule periods (values of “k”) in which

the jth access occurs in w*. Thus the jth access of some schedule period will be a wrap-around

access if and only if the jth access of the first schedule period occurs at the end of a window. We

have proved the following theorem.

Theorem 3: Suppose α is an SDF arc. Then the jth access ( j ∈ {1, 2, …, TNSE}) of source(α) or

sink(α) is a wrap-around access in some schedule period if and only if

[delay(α) + (j − 1) ] mod gcd(TNSE, BUFSIZE) = gcd(TNSE, BUFSIZE) − 1.

A B
3 5

Schedule: AABAABAB

TNSE = 15

BUFSIZE = 10

gcd(TNSE, BUFSIZE) = 5 (“window” size)

window 1 window 2

first access by A in all odd schedule periods first access by A in all even schedule periods

Fig 21. An illustration of repetitive access patterns in gcd(TNSE, BUFSIZE) windows.
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Proof: c mod b = c − floor(c / b) × b. Both the subtrahend and minuend of the LHS are divisible

by a, so a must divide c mod b. QED

Lemma 2: Suppose that p and q are coprime positive integers, let Iq denote {0, 1, …, q − 1}, and

suppose r ∈ Iq. Then ∀ k1 ∈ Iq ∃ k2 ∈ Iq such that (r + pk2) mod q = k1.

Proof: Suppose that for some k1, no such k2 exists. Then [(r + px) mod q] takes on at most (q − 1)

distinct values as x varies accross Iq. Thus there exist distinct k2a, k2b ∈ Iq such that

(r + k2a p) mod q = (r + k2b p) mod q = k, for some k ∈ Iq.

Which implies that there exist distinct nonnegative integers ra and rb such that

r + k2a p = ra q + k, and r + k2b p = rb q + k.

⇒ (k2a − k2b) p = (ra − rb) q.

Since p and q are coprime, it follows that (k2a − k2b) is a multiple of q. This contradicts our

assumption that k2a, k2b ∈ {0, 1, …, q − 1}. QED

Applying lemma 1, with a = gcd(TNSE, BUFSIZE), b = k1TNSE, and c = BUFSIZE, we

see that

∀ positive integers k1 ∃ a positive integer k2 such that

 (k1TNSE mod BUFSIZE) = k2gcd(TNSE, BUFSIZE).

This means that we can consider each dynamic buffer as successive “windows” of size

gcd(TNSE, BUFSIZE). In some schedule period, if source(α) or sink(α) performs its ith access at

offset j of window wx, then, since the ith access shifts TNSE positions from schedule period to

schedule period, we know that the ith access in any schedule period will occur at offset j of some

window. For example, for the dynamic buffer in figure 21, it is easy to verify that for all schedule

periods, the window offset for A’s first access is 0.
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6 Eliminating Modulo Address Computations

In section 4 we discussed the overhead associated with accessing circular buffers and we

presented examples of how we could reduce this overhead with careful compile-time analysis. We

showed that in the absence of looping, we need only perform modulo address-register updates for

accesses that wrap around the end of a circular buffer. We also presented examples of how modulo

accesses can be eliminated even in the presence of looping. In this section we develop a system-

atic approach to eliminating modulo accesses.

6.1 Determining Which Accesses Wrap Around

First, we show how to efficiently determine which accesses of a circular buffer wrap

around the end of the buffer. For a static circular buffer this is straightforward — we simply deter-

mine the values of n ∈ [0, TNSE − 1] for which

delay(α) + n = (some positive integer) × BUFSIZE,

where α denotes the arc in question, and BUFSIZE denotes the length of the circular buffer.

For dynamic buffers, different accesses will wrap around the end of the buffer in different sched-

ule periods. However there may still exist invocations whose accesses do not wrap around in any

schedule period. To determine these invocations we need to use a few simple facts of modulo

arithmetic.

Lemma 1: Suppose a, b and c are positive integers, and suppose that a divides b and c. Then a

divides (c mod b).

A B C
4 1

100D

1 1
Schedule: ACBCBCBCB

Fig 20. An example showing the benefits of decomposing the dynamic buffer component
into a separate segment for each dynamic transaction.



Overlaying Buffers

MEMORY MANAGEMENT FOR SYNCHRONOUS DATAFLOW PROGRAMS 35 of 53

From the above discussion, the number of dynamic samples when R = M(α) is M(α) − Ns, and

this amount of dynamic samples cannot be exceeded with any other value of R. Therefore Nd =

M(α) − Ns, which leads immediately to the desired result. QED

We conclude this section by pointing out that it is possible to decompose the dynamic

buffer component further — each dynamic transaction can be mapped to an independent block.

For example, the dynamic buffer component in figure 19 can be separated into three two-word

fragments corresponding to transactions (3, 1), (4, 2) and (6, 4). This could be achieved simply by

using different read and write pointers for each of the associated accesses — we would need three

separate write pointers for A[3], A[4] and A[6] and three separate read pointers for B[1], B[2] and

B[4]. The overhead associated with this scheme is significant, but difficult to gauge precisely.

First, it places more pressure on the address-register allocator and may increase the amount of

spilling. This, in turn requires an extra memory location to save each spilled item. Finally, the sum

of the independent dynamic transaction segments (in this case 2 + 2 + 2 = 6) may exceed the max-

imum number of coexisting dynamic samples (in this case 5). Thus, for small to moderate

dynamic buffer sizes it is unlikely that decomposing the dynamic buffer component further will

be of value. However, when large delays are involved, it may provide substantial new opportuni-

ties for overlaying. For example, in figure 20 there are no static transactions for B↑C, and a 100

word block of memory is required for this arc if we do not decompose the dynamic buffer compo-

nent. However, if we view each of the four dynamic transactions ((1, 1), (2, 2) (3, 3) (4, 4)) as a

separate unit, we can implement this arc with four independent 25 word blocks of memory. This

additional freedom may lead to much better overall memory use if this example is a subsystem in

a more complex graph.

Since currently we cannot effectively predict the tradeoffs in decomposing the dynamic

buffer component, we have no systematic procedure for determining precisely when the optimiza-

tion is useful. This is a topic for further research.
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words. Although the net requirement of physical memory is the same (8 words), there is less

potential for fragmentation, or equivalently, more opportunity for buffer reuse [8] when this

example is a subsystem in a larger graph. Furthermore, the lifetime of β extends through the entire

schedule period, whereas L2 and L3 are live only in the interval between A1 and B2. These two

locations may thus be reused for other parts of the graph.

It is not obvious however, that decomposing a buffer based on static and dynamic transac-

tions will never increase the net memory requirements. If we refer to the samples associated with

static transactions and dynamic transactions as static samples and dynamic samples respectively,

then the transaction-based decomposition requires a set of blocks whose sizes total Ns + Nd

words, where Ns is the number of static samples (in a single schedule period) and Nd is the maxi-

mum number of coexisting dynamic samples. If this sum exceeds the maximum number of coex-

isting samples on the arc, then without further analysis — for which currently there are no general

techniques — we cannot guarantee that decomposing the buffer will not be detrimental. Fortu-

nately, however, (Ns + Nd) is always equal to the undecomposed dynamic buffer size, as the fol-

lowing theorem proves.

Theorem 2: Suppose that α is an SDF arc for which the maximum number of coexisting samples

M(α) exceeds TNSE. Then Ns + Nd = M(α).

Proof: Suppose at some time τ in the schedule period there are R live samples on α, and first sup-

pose that R ≥ TNSE. Since the tokens buffered on an arc are successive, the last TNSE samples

produced by source(α) are on the arc. Thus, there is a sample corresponding to each static transac-

tion on the arc. It follows that there are R - Ns dynamic samples on α at time τ. Now suppose that

R < TNSE. We consider two cases here:

Case 1: (R < TNSE) and (Ns < TNSE − R). Then

(The number of dynamic samples at time τ) ≤ R ≤ TNSE − Ns < M(α) − Ns.

Case 2: R < TNSE) and (Ns ≥ TNSE − R). Then

(The number of dynamic samples at time τ) ≤ R − [Ns − (TNSE − R)] = TNSE − Ns < M(α) − Ns
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A B
2 3

4D

Schedule: AABAB
(1, 5) <static> (4, 2) <dynamic>

(2, 6) <static> (5, 3) <static>

(3, 1) <dynamic> (6, 4) <dynamic>

number of samples on A↑B

read access just prior to the access

B[1] 8

B[2] 7

B[3] 6

B[4] 7

B[5] 6

B[6] 5

transactions

L1 L2 L3

1,3 1,5 1,6

1,3initially

after A1

Dynamic Buffer Component

after A2

after B1

after A3

after B2

1,3 1,5 1,6

1,5 1,6

2,3 1,5 1,6

2,3

1,1 1,2 1,4

1,1 1,2 1,4

1,4 2,1 2,21,1 1,2

1,4 2,1 2,2

2,4 1,4 2,1 2,2

2,4 2,1 2,2

Fig 19. An illustration of static transactions and dynamic transactions for a dynamic buffer. In
(b), “i,j” represents the live sample which is to be the jth sample consumed by B in schedule
period i.

(a)

(b)

Schedule: AABAB
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The transactions on an arc can be determined easily from the acyclic precedence expan-

sion graph, or APEG (see [29] for a systematic procedure for computing the APEG associated

with an SDF graph), and the static and dynamic transactions can be identified by simulating the

activity on the arc over one schedule period. Figure 19 illustrates the decomposition of a buffer

based on static and dynamic transactions. In this example, TNSE is 6 while the maximum number

of coexisting samples on A↑B is 8 — so clearly dynamic buffering applies. However, from the

table on the right side of figure 19(a), we see that the third, fifth and sixth read accesses of B occur

when there are TNSE or fewer samples queued on A↑B. This corresponds to the set of static

transactions, which is summarized in the table on the left side of figure 19(a). Thus samples asso-

ciated with transactions (1, 5), (2, 6) and (5, 3) can be buffered in independent memory locations,

while (3, 1), (4, 2) and (6, 4) must be maintained in a single contiguous block of memory. The

resulting constraint sets are {A[1]}, {A[2]}, {A[5]}, {A[3], A[4], A[6]}. Figure 19(b) illustrates

the use of these constraint sets to form independent buffering units. Here, A[1], A[2] and A[5] are

mapped to independent (not necessarily contiguous) memory locations L1, L2 and L3 respec-

tively, and the remaining constraint set is mapped to a five-word contiguous block of storage,

labeled the “dynamic buffer component”. Five words are required because this is the maximum

number of coexisting live samples from {A[3], A[4], A[6]}. Figure 19(b) shows how the profile

of live samples in this buffering arrangement changes through the first schedule period. Each live

sample is represented by an ordered pair i,j, which denotes the jth sample to be consumed by B in

schedule period i, and a shaded region designates the absence of a sample. Observe that for each

live sample s in the dynamic buffer component, there is some point in the schedule period when s

coexists with the corresponding sample of the next or previous period. This is precisely why these

samples must be buffered as a contiguous unit. Observe also that in the dynamic buffer compo-

nent, the read and write pointers for B and A, respectively, each shift three positions to the right

(in a modulo-5 sense) every schedule period. These pointers are not involved in accesses of L1,

L2 and L3 — these locations can be accessed using absolute addressing.

For the example in figure 19, mapping all accesses of A↑B to a single contiguous segment

β of memory requires an 8 word block of memory, while decomposing this buffer based on static

and dynamic transactions allows a partition into four mutually independent blocks of 1, 1, 1 and 5
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5.3 Constraints for Dynamic Buffering

Dynamic buffering imposes contiguity constraints between buffer accesses whenever a

read occurs when the number of samples on the arc exceeds TNSE. In such situations, the sample

to be read co-exists with the corresponding sample of the next schedule period — so we cannot

dedicate a single memory location to that sample. For a given arc, an efficient way do deal with

such cases is to force all of these accesses to occur in the same contiguous block β of memory.

Since each of these sample’s location will vary between schedule periods, they access β through

read/write pointers. Any read which occurs when the sample population is within TNSE however,

corresponds to a sample whose location is independent of β. To explain this effect precisely, we

introduce the following definition:

Definition 3: Let G be an SDF graph and suppose that A↑B is an arc in G.Then a transaction on

A↑B is an ordered pair (i, j), 1 ≤ i,j ≤ TNSE, such that1

Thus (i, j) is a transaction on A↑B if the jth sample consumed by B in any given schedule period

is the ith sample produced by A in that schedule period or some earlier schedule period. For a

given periodic schedule S for G, we say that (i,j) is a static transaction if the number of samples

existing on A↑B just prior to the jth read of B is less than or equal to TNSE. We can express this

condition as

where NB = 1 + floor[(j — 1) / c(A↑B)] is the invocation of B in which the jth read access of A↑B

occurs and NA is the number of invocations of A which precede  in S. Finally, we say that a

transaction is a dynamic transaction if it is not a static transaction.

1.  The “+1” and “-1” are required in this expression because we (by convention) number samples starting at 1 rather than 0.

j i 1− delay A ↑ B( )+[ ] mod��TNSE( ) 1+=

delay A ↑ B( ) p A ↑ B( )NA+[ ] c A ↑ B( ) NB 1−( ) j 1−( ) �mod� c A ↑ B( )+[ ]− TNSE,≤

BN
B
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merge buffer periods {A[7-9]} and {A[10-12]}, and the resulting buffer periods are {A[1-6]} and

{A[7-12]}. Finally, if we impose the condition that B reads A↑B through an intra-actor loop, then

we have the six additional constraint sets shown in the fifth row of figure 18(b).The first of these

constraint sets intersects both of the remaining buffer periods and we are left with a single buffer

period {A[1-12]}.

So far we have only mentioned that dynamic buffering can also lead to constraint sets,

however we have not described this effect. The effects of dynamic buffering are more subtle than

conditions imposed by loops. This is the topic of the next subsection.

C A B
4 1 3 2

D
Schedule: CAABABBABBB

(a)

Singletons {A[1]} {A[2]} … {A[12]}

A writes to A↑B through a loop {A[1-3]} {A[4-6]} {A[7-9]} {A[10-12]}

Encapsulate A1, A2 in a schedule loop {A[1-6]}

Encapsulate B5, B6 in a schedule loop {A[8-11]}

B reads from A↑B through a loop {A[12],A[1]} {A[2],A[3]} {A[4],A[5]}

{A[6],A[7]} {A[8],A[9]} {A[10],A[11]}

Some Possible Constraint Sets

(b)

Fig 18. This example illustrates how superimposing different constraint sets can lead to dif-
ferent buffer periods. The figure depicts a multirate graph, a schedule for the graph and
five possible constraint sets for the arc A↑Β. We use A[i-j] as shorthand notation for A[i],
A[i+1], …, A[j], if i < j.
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Definition 2: Given an SDF graph G, an arc α in G, and a schedule S for G, let C = {C1, C2, …,

Ck} denote the collection of constraint sets imposed on α. Suppose b = {b1, b2, …, bn} ⊆ C such

that

(1) No member of b is independent of all other members of b — if n > 1, then for

each bi there is at least one bj ≠ bi such that bj ∩ bi ≠ ∅; and

(2) b is independent of the remainder of C — i.e.

Then  is called a buffer period for α.

One can easily verify that for a given schedule, each arc has a unique partition into buffer

periods. Furthermore, samples in the same buffer period must be mapped to the same contiguous

physical buffer whereas distinct buffer periods can be mapped to different segments of memory.

Finally, the amount of memory required for a buffer period is simply the maximum number of

coexisting live samples in that buffer period. Figure 18(a) depicts an example which we will use

to illustrate the consolidation of different constraint sets into buffer periods. The schedule of fig-

ure 18(a) does not contain any loops. If the buffer accesses within A or B do not occur

within intra-actor loops, then only the singleton constraint sets apply to A↑B, and the buffer peri-

ods are {A[1]}, {A[2]}, …, {A[12]}.

Now suppose A accesses A↑B through a loop inside A. The corresponding constraint set

is shown in the second row of figure 18(b), and we obtain the resulting buffer periods by superim-

posing the first two rows of figure 18(b) — {A[1-3]}, {A[4-6]}, {A[7-9]}, {A[10-12]}. If we add

the additional condition that the first two invocations of A are grouped into a schedule loop (we

change the schedule to C(2A)BABBABBB), then we must consider another constraint set {A[1-

6]}. The new buffer periods are the combination of the 17 constraint sets in the first three rows of

figure 18(b) — {A[1-6]}, {A[7-9]}, {A[10-12]}. Now if we encapsulate B5 and B6 within a

schedule loop (the new schedule is C(2A)BABBAB(2B)), the resulting constraint set is {B[9-

12]}, which is equivalent to {A[8-11]} due to the unit delay. This new constraint forces us to

b
z
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n

∪( ) C
z

z 1=

k

∪( ) b
z

z 1=

n
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Determining the constraints due to schedule loops is also straightforward. Given an arc

A↑B and an X ∈ {A,B}, each outermost loop L in the periodic schedule defines a constraint set

that consists of all accesses by X of A↑B which occur within L. We can derive these from the con-

tiguous ranges of invocations of A and B that L encapsulates. We map all accesses within a loop

to the same physical block of memory because we cannot easily perform isolated resets of read/

write pointers inside loops. Expensive schemes — such as testing the loop index to determine

which physical buffer to use or maintaining an array of buffer locations — are required to frag-

ment buffering within a loop. We do not consider such schemes presently because we expect that

their benefits are rare, and thus we consolidate accesses within loops to the same physical buffers.

Note that unlike the constraint sets corresponding to loops inside actors, a constraint set

corresponding to a schedule loop does not necessarily require a separate word for each member of

the set. A simple example is shown in figure 17. Here, the loop imposes the constraint set {B[1],

B[2], … B[20]} for B↑C, but clearly only two words are required to implement the buffer for this

arc. The actual memory requirement for each section of a fragmented buffer can easily be deter-

mined by simulating the buffer activity over a single schedule period and noting the maximum

number of coexisting samples.

The constraint sets due to intra-actor looping, inter-actor looping and dynamic buffering

together define the physically independent sections of a buffer, which we have termed the “buffer

periods”. We also include the singleton constraints {A[1]}, {A[2]}, …, {A[TNSE]}, which we

need to account for samples that don’t appear in any of the other constraint sets. For an SDF arc α,

we refer to the entire collection of constraint sets, including the singleton constraints, as the col-

lection of constraint sets imposed on α. Then, determining the buffer periods, which can be

viewed as the maximal independent constraint sets, amounts to partitioning the entire collection

into maximal nonintersecting subsets.

A B
10 1

C
2 2

Schedule: A(10 B C)

Fig 17. An illustration of compact buffering within a constraint set.
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defined a buffer period to be an indivisible subset of invocations whose accesses of a particular

arc are independent of the other invocations that access the arc. This independence allows differ-

ent buffer periods for the same arc to be mapped to different blocks of memory and it provides an

efficient way to fragment the aggregate buffer’s lifetime.

There are four mechanisms that can impose contiguity constraints on successive buffer

accesses of an arc α — writes to α occurring from a loop inside source(α); reads from α occurring

from inside a loop in sink(α); placement of source(α) or sink(α) within a schedule loop; and

dynamic buffering. The constraints imposed by these mechanisms can be specified as subsets of

samples which must be buffered in the same block of storage. For example, suppose that for the

SDF graph in figure 16(a), actor A is programmed so that it writes its samples iteratively. The

resulting contiguity constraints are illustrated in figure 16(b) — the three samples produced by

each invocation must be stored in three adjacent memory locations. We specify these two con-

straints by the subsets {A[1], A[2], A[3]} and {A[4], A[5], A[6]}, where A[i] represents the ith

sample accessed by A in a schedule period 1(for 1 ≤ i ≤ TNSE). The constraints resulting from B’s

reads occurring from within a loop are depicted in figure 16(c), and we can represent these con-

straints analogously as {B[1], B[2]}, {B[3], B[4]} and {B[5], B[6]}. However, since we must ulti-

mately superimpose all constraints, we would like to express them in terms of the same actor. Our

convention will be to express all contiguity constraints in terms of the source actor. Thus, noting

the unit delay on A↑B, we translate figure 16(c) to {A[6], A[1]}, {A[2], A[3]}, {A[4], A[5]}.

1.  This notation assumes that the arc in question (in this case A↑B) is understood.

A B
3 2

Fig 16. An illustration of buffering constraints when arcs are accessed through loops inside
the actors.

B1

D

A1 A 2

B2 B3

(a) (b) (c)
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D4, B2} and the first buffer period wraps around the end of the periodic schedule — the first four

samples consumed by B in a schedule period are the last four samples produced by D in the previ-

ous schedule period. Notice also that each of the buffer periods for Β↑C, C↑D and D↑B requires

four words of storage. From the lifetime profile, we see that B↑C<1> overlaps with C↑D<1>,

C↑D<1> overlaps with D↑B<2>, and D↑B<2> overlaps with B↑C<2>. Thus if we are con-

strained to map all buffer periods of a given arc to the same block of memory, then three separate

4-word blocks are required for B↑C, C↑D and D↑B. If, however, we consider each buffer period

as an independent unit, then from the two lower sections of the lifetime profile, we see that only

two 4-word segments suffice — one for {B↑C<1>, D↑B<2>, C↑D<2>} and another for

{D↑B<1>, C↑D<1>, B↑C<2>}. Taking into account the 2 words required for A↑B, we see that

the decomposition into buffer periods reduces the total storage requirements from 14 words to 10.

5.2 Determining Buffer Periods

In the previous subsection, we illustrated the use of buffer periods to reduce lifetimes and

to increase flexibility in allocating memory for contiguous buffers. Now we examine how to sys-

tematically determine the buffer periods and to apply them to memory allocation. We have loosely

A B C D
2 1 4 1 1 1

Schedule : AB(4C)(4D)B(4C)(4D)

A1 B1 C1 … C4 D1 … D4 B2 C5 … C8 D5 … D8

A↑B

C↑D <1> B↑C <2> D↑B<1>D↑B<1>

Fig 15. An example of how mapping different buffer periods of an arc to different blocks of
memory can improve memory allocation.

C↑D <2>B↑C <1> D↑B <2>B↑C <1>

14

4D
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suppress the “<1>” index for arcs that have only one buffer period). This new profile reveals that

we can map both B↑D and C↑E to the same 10-unit block of storage, because even though the

lifetimes of these arcs conflict, the buffer periods do not. Thus the memory requirements can be

reduced almost in half to 14 words.

In this example, we have exploited only the reduction in overall lifetime for a decomposi-

tion into buffer periods. It is also possible to map different buffer periods for the same arc to dif-

ferent blocks of memory. This technique may be useful for overlaying buffers along multirate

cyclic paths in the SDF graph. Consider, for example figure 15. This figure shows an upsampled

multirate feedback loop along with the resulting buffer period profiles. Notice that due to the

delay of four on D↑B, the buffer periods of this arc are {D5, D6, D7, D8, B1} and {D1, D2, D3,

A

B

C

D

E

2

1

2

1

10 1

10 1

Fig 14. An illustration of opportunities to overlay buffers based on the periodicity of accesses.

A1 B1 D1... D10 C1 E1 ... E10 B2 D11 ... D20 C2 E11 ... E20

A↑B

B↑D

C↑E

A↑C

A1 B1 D1 ... D10 C1 E1 ... E10 B2 D11 ... D20 C2 E11 ... E20

A↑C

A↑B

B↑D <1> B↑D <2>C↑E <1> C↑E <2>

Aggregate Buffer Lifetimes

Buffer Period Lifetimes

Schedule : AB(10D)C(10E)B(10D)C(10E)
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contiguous buffer to a separate block of physical memory may require more data-memory space

than what is available. In this section, we show how to analyze dataflow properties and properties

of the schedule to efficiently determine opportunities for mapping multiple noninterfering buffers

to the same physical memory locations. We also show how to determine how to fragment contig-

uous buffers in physical memory, which can expose more opportunities for overlaying [8]. This

precise lifetime and fragmentation information can be used to improve simple first-fit or best-fit

storage optimization schemes, which are frequently applied to memory allocation for variable-

sized data items. Fabri [8] has studied more elaborate storage optimization schemes that incorpo-

rate a generalized interference graph. These schemes are equally compatible with the methods

developed in this section.

5.1 Buffer Periods

The periodic nature of buffer accesses can be exploited to fragment an arc’s storage into

multiple independent contiguous blocks whose combined lifetime does not exceed — and is often

much less than — the lifetime of the entire arc. Figure 14 illustrates this effect. Here, a multirate

graph is depicted along with a looped schedule for the graph and the resulting buffer lifetime pro-

files. The first profile treats each arc as an indivisible unit with respect to buffering. In this model,

a delayless buffer is assumed to be “live” from the first firing of the source actor until the last fir-

ing of the sink actor and for an arc with nonzero delay, a buffer is deemed live throughout the

entire schedule period. In the example of figure 14, we see that this straightforward designation of

buffer lifetimes does not reveal any opportunity for buffers to share storage and thus A↑B, A↑C,

B↑D and C↑Ε require 2, 2, 10 and 10 units of storage respectively, for a total of 24 units.

Notice, however, that invocations that access B↑D can be divided into two sets {B1, D1,

D2, …, D10} and {B2, D11, D12, …, D20} such that all samples are produced in the same set that

they are consumed — there is no interaction among the two sets. Thus they can be considered as

independent units for storage allocation, with lifetimes ranging from B1 through D10 and B2

through D20 respectively. We call these two invocation subsets the buffer periods of B↑D, and we

denote them by successive indices as B↑D<1> and B↑D<2>. The live range for C↑E can be

decomposed similarly and the resulting lifetime profile is depicted at the bottom of figure 14 (we



Overlaying Buffers

MEMORY MANAGEMENT FOR SYNCHRONOUS DATAFLOW PROGRAMS 23 of 53

4.5 Summary

Fig 13 illustrates the relationships between the different buffer classifications which we

have presented. Any vertical path represents a set of buffer qualities that can coexist. There are

four possible combinations — contiguous/static/linear, contiguous/static/modulo, contiguous/

dynamic/modulo and scattered/static/linear. This section has provided a systematic approach to

determining the qualities of a buffer based on information in the dataflow graph.

We conclude this section with a summary of the situations in which register indirect

addressing is desirable:

 • The buffer is dynamic.

• The buffer is accessed from within a schedule loop and all members of the CCSS do not

access the buffer at the same offset.

• The buffer is accessed from a loop inside the actor.

5 Overlaying Buffers

Recall that storage optimization for the scattered buffers in an SDF program can be formu-

lated in terms of coloring a circular-arc graph and that effective heuristics have been developed

for this class of coloring problems [13]. Contiguous buffers do not lend themselves to this tech-

nique since their sizes vary [12]. When large sample rate changes are involved, assigning each

CONTIGUOUS

STATIC DYNAMIC

LINEAR MODULO

SCATTERED

STATIC

LINEAR

Fig 13. The relationship between the different categories of buffers for an SDF program.
Any vertical path represents a set of buffer qualities that can coexist.
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resetting Crp to point to the beginning of the buffer just prior to entering the loop (2B(2C)). Also,

due to the delay on B↑C, the write-pointer for B wraps around after the first write access of invo-

cation B2 in each schedule period. Thus, if B’s writes do not occur inside a loop within B, then we

can omit the modulo address computation for the first write in the code block for B.

In section 6, we will present general techniques for eliminating modulo accesses. Pres-

ently, we conclude that circular buffering may potentially introduce execution-time overhead. For

arcs with delay, this risk in unavoidable — circular buffers are mandatory. However, for some

delay-free arcs it may be preferable to forego the data-memory savings offered by modulo buffer-

ing so that the overhead can be avoided. A buffer size of TNSE clearly guarantees that no modulo

accesses will be required — provided that we reset the buffer pointer at the start of every schedule

period. Smaller buffer sizes (divisors of TNSE which meet or exceed the maximum number of

coexisting samples) are also possible, but one must verify that no access within a loop wraps

around the buffer. This expensive check is very rarely worth the effort. A simple rule of thumb

can be used for deciding whether to switch to linear buffering for a delayless arc — we prioritize

each delayless arc α by the following “urgency measure” µ:

The first bracketed term is the number of modulo accesses that occur on each end of α

every schedule period, and the denominator in the second term is the storage cost to convert this

arc to a static buffer of size TNSE. Thus, µ(α) denotes the number of modulo accesses eliminated

per word of additional storage. We simply convert the arcs with the highest µ values until we have

exhausted the remaining data memory. Many variations on this scheme are possible, and architec-

tural restrictions on the layout of storage, such as multiple independent memories [19], may

require modification.

µ α( )
TNSE α( )

minimum buffer size of α
1

TNSE α( ) minimum buffer size of α( )−×=
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Unfortunately, the presence of loops often precludes the application of this technique. For

example, if actor B was programmed with a loop surrounding the input buffer accesses, then the

modulo computation would have to be performed in every iteration of the loop even though wrap-

around only occurs during the second iteration. A naive policy to account for loops would be to

perform a modulo update every time a circular buffer is accessed from within a loop. However,

this would prevent us from exploiting an opportunity for optimization which occurs in many mul-

tirate graphs.

Figure 12 shows a simple example. Here, due to the unit delay, a circular buffer is required

to implement arc Β↑C. Since TNSE(Β↑C) = 4, a buffer of length four suffices for static buffering.

Let Crp denote the readpointer associated with C’s accesses of B↑C, and observe that Crp wraps

around its associated buffer after every fourth access. Since C performs four read accesses

throughout each invocation of the loop (2B(2C)), modulo address computation can be avoided by

move X:(r0)+, x0 ; Consume the first input token.

move #44, r0 ; Reset the input buffer’s pointer to the start of the buffer.

move X:(r0)+, x1 ; Consume the second input token.

move X:(r0)+, y0 ; Consume the third input token.

............. ; Process the input samples......

............. ;

Fig 11. An example of how modulo address updates can be avoided for circular buffers.
Part (a) shows an SDF graph and a schedule for this graph, and part (b) shows sample
Motorola 56000 code to implement the buffer accesses of invocation B2 assuming a buffer
size of four.

A B
2 3

Schedule: AABAB

(a)

(b)

A B C
2 1 2 1

D
Schedule A(2B(2C))

Fig 12. An example of an opportunity to optimize modulo buffer accesses within a loop.
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4.4 Linear vs. Modulo Buffering

For each contiguous buffer, we must determine whether modulo address-updates will be

required to make the buffer pointer “wrap-around” the end of the buffer. Such modulo address

updates normally require overhead; the amount of overhead varies from processor to processor.

For instance, recall example 1, which illustrates the Motorola DSP56000’s hardware support for

modulo address generation. Here a “modifier register” must be loaded with the buffer size before

modulo updates can be performed on the corresponding address register, so there is a potential

overhead of one instruction every time the buffer pointer is swapped into the register file. When

there is no hardware support for modulo addressing, as with general purpose RISC microproces-

sors such as the MIPS R3000 [17], the modulo update must be performed in software every time

the buffer is accessed. A sample MIPS R3000 assembly code sequence to perform this update is

shown in figure 10. This reveals an overhead of several instructions for each buffer access.

For static buffering, we know exactly which accesses require a modulo update. We need

not perform modulo address computations for any other access, and for the accesses that wrap

around the buffer, we can simply load the start address of the buffer into the corresponding

address register — no explicit modulo computation is required. For example, consider the exam-

ple in figure 11(a) and suppose that a buffer of length 4 is used. Then clearly the read-pointer for

B wraps around the buffer between the first and second accesses of the second invocation B2.

Thus code for B2 could have the structure outlined in figure 11(b). The only overhead for modulo

buffering in this case is a single load instruction — regardless of whether or not hardware support

for modulo addressing is required.

lw $10, 22($11) # # Load the address of the end of the buffer.

beq $10, $12, $40 # # Compare with the buffer pointer.

addi $12, 1 # # Increment pointer if not equal.......

j $41

$40:

lw $12, 23($11) # # Otherwise, reset the pointer to the start of the buffer.

$41:

Fig 10. Sample MIPS R3000 assembly code to perform a modulo address calculation.
Note that both registers and labels are identified by leading ‘$’ characters.
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With dynamic buffering, no invocation accesses the buffer at the same offset every sched-

ule period. To see this, suppose some invocation Aj accesses a buffer β at the same offset every

period. Since the buffer pointer for Aj advances TNSE positions from one schedule period to the

next, it follows that TNSE must be a positive integer multiple β’s logical buffer size, and thus the

buffer must be static. Thus, absolute addressing is never possible for a dynamic buffer — dynamic

buffers must be contiguous, and if an actor A accesses a dynamic buffer, the current position in the

buffer must be maintained as a state variable of A. We find register-indirect addressing most

appropriate, and when available, hardware autoincrement/autodecrement should be used to

advance the buffer pointer in parallel with the accesses.

Another important aspect of the physical layout of a buffer is the effect on total storage

requirements. The locations of a scattered buffer can be considered as independent entities with

respect to memory allocation, and graph coloring [12] can be used to assign physical memory

locations to the set of scattered buffers. If all scattered buffers correspond to delayless arcs then

the interference graph becomes an interval graph, and interval graphs can be colored with the

minimum number of colors in linear time [31, 5]. The presence of delay on one more of the rele-

vant arcs complicates coloring substantially. A delay results in a sample that is read in a schedule

period after the period in which it is written, and thus the lifetime of the sample crosses one or

more iterations of the program’s outermost (infinite) loop. The resulting interference graphs

belong to the class of circular-arc graphs [13]. Finding a minimum coloring for this class of

graphs is intractable, but effective heuristics have been developed [13].

When subsets of variables must reside in contiguous locations, we expect that the memory

requirements will increase since this imposes additional constraints on the storage allocation

problem. Until further insight is gained about this effect or a large set of experimental data is

obtained, we cannot accurately estimate how much more memory will be required if a particular

scattered buffer is changed to a contiguous buffer. However, since optimal storage layout requires

scattered buffers, it is likely that when data-memory requirements are severe, arcs should be

implemented as scattered buffers whenever possible. We will discuss storage optimization further

in section 5.
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schedule which takes full advantage of the looping possibilities for this graph is A(4B). However,

this schedule results in five samples on the arc after A is fired, which exceeds the TNSE of four.

Grouping all four invocations of B together in the schedule requires that the maximum number of

samples on the arc exceed the TNSE.

4.3 Contiguous vs. Scattered Buffering

Once we have decided whether a buffer is to be static or dynamic, we may decide upon

whether it will be a contiguous buffer, occupying a section of successive physical memory loca-

tions, or whether the buffer may be scattered through memory. The decision primarily affects the

addressing modes that can be used to access the buffer and the storage efficiency of the memory

allocation. Clearly, only a contiguous buffer can be accessed through register autoincrement/auto-

decrement indirect addressing, and thus a buffer that is accessed from within any kind of loop — a

loop arranged by the scheduler or a loop that appears inside the code template for an actor — must

usually be implemented using a contiguous buffer. The only exception occurs when all CCSS’s

associated with the source or sink of an arc access the arc statically — in this case absolute

addressing can be used. Depending on the target processor, this may be an important exception to

consider. For programmable DSPs such as the Motorola 56000, arbitrary absolute addresses

require an additional word of program memory, and thus an additional instruction cycle. Register-

indirect accesses require no such overhead and can often be performed in parallel with other oper-

ations [26]. Under these circumstances, contiguous buffering and register-deferred addressing are

preferable for multiword buffers even if the loop-structure permits absolute addressing. On the

other hand, many general-purpose RISC microprocessors allow large absolute displacements to

be accessed through single-word instructions [14], but they do not allow register-indirect accesses

to be issued in parallel with other instructions. Furthermore, they do not support autoincrement

mode in hardware — a separate instruction must be issued to increment the index register. In this

case there is no advantage to using register-indirect addressing when the loop structure does not

require it. There is no point in incurring the overhead to initialize the address register and the

overhead due to a possible increase in register swapping, and thus absolute addressing is prefera-

ble.
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To fully asses the benefit of choosing static buffering over dynamic buffering for a partic-

ular arc, we must consult the first-reaches table at every spill-point. Performing this check on

every multiword buffer is very expensive. Instead, we should perform this check only for critical

sections of the program. For example if an arc carries a large amount of traffic, we would wish to

choose dynamic buffering unless the arc is accessed from very frequently executed parts of the

program and the loop structure permits taking advantage of static buffering. Similarly, the data-

memory savings of implementing a low-traffic arc as a dynamic buffer is often negligible — the

compiler has little to lose by choosing static buffering for such cases.

We conclude this subsection with a note on the requirements for static buffering. The two

conditions of theorem 1 together imply that static buffering cannot be possible if TNSE is less

than the maximum number of samples that coexist on the arc. For this to happen, clearly the arc

must have nonzero delay since TNSE samples are produced and consumed from the arc every

schedule period. When there is delay, however, it is possible that at some point in the schedule

period, the arc will buffer more than TNSE tokens. For example, looping often creates a situation

in which an arc must be implemented as a dynamic buffer. This is illustrated in figure 9. The

A1 C2
A2 C3
A3 B1 C5 B2 C4 B5 C8
A4 C1 B3 C6 B4 C7 B6 C9

A1,A2,A3,A4 T T T F F F F F
C1 T F T T F F F F
B1,B3 T F F T T F F F
C2,C3,C5,C6 T F F T T T F F
B2,B4 T F T F F T T F
C4,C7 T F T T F F T T
B5,B6 T F T F F F T T
C8,C9 T T T F F F T T

Table 2. The first-reaches table associated with the looped schedule (4A)C(2B(2C)BC)(2BC)

(the corresponding flow graph is shown in figure 5. The entry corresponding to a row CCSS

X and a column CCSS Y is “true” (T) if and only if there is a control path that goes from X to

Y without passing through another CCSS for the actor that corresponds to Y.

A B
4 1

D
Schedule: A(4B)

Fig 9. An illustration of how looping can necessitate dynamic buffering.
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associated with actor A and arc α must be swapped out of its register at some point in the pro-

gram. First we must determine location X in the CCSS graph that corresponds to this swap-point.

From X, we traverse all forward paths until they either reach the end of the program, they traverse

the same node twice (they traverse a cycle), or they reach an occurrence of a CCSS for A. We are

interested only in the first time a forward path encounters a CCSS for A. Let P be the set of all for-

ward paths p from X which reach a CCSS for A before traversing any node twice, and let A(p)

denote the first CCSS for A that p encounters. Then the buffer pointer must be spilled to memory

if and only if the set P contains a member p* such that A(p*) does not access α statically.

Traversing forward paths at every spill may be extremely inefficient. Instead, we can per-

form a one-time analysis of the loop organization to construct a table containing the desired reach-

ability information. The concept is similar to the conventional global data flow analysis problem

of determining which variable definitions reach which parts of the program [1]. However, our

problem is slightly more complex. In global dataflow analysis, we need to know which variable

definitions are live at a given point in the program. For eliminating buffer-pointer spills, we need

to know which points in a program can reach a given CCSS without passing through another

CCSS for the same actor. This information can be summarized in a boolean table which has each

entry indexed by an ordered pair of CCSS’s (C1, C2). The entry for (C1, C2) will be true if and

only if there is a control path from C1 to C2 which does not pass through another CCSS for the

actor that corresponds to C2. We refer to this table as the first-reaches table since it indicates the

points (the CCSS’s) at which control first reaches a given actor from a given CCSS.Table 2 shows

the first-reaches table for the looped schedule (4A)C(2B(2C)BC)(2BC). The CCSS flow graph

associated with this schedule is depicted in figure 5.

In the appendix, we describe a technique for constructing the first-reaches table based

largely on methods described in [1] for reaching definitions. An important difference is that a sep-

arate pass through the loop hierarchy is required to construct the columns associated with each

actor, whereas reaching definitions can be dealt with in a single pass. In practice, however we are

concerned only with the columns of the first-reaches matrix that correspond to actors which

access multiword contiguous buffers, so often a large number of passes can be skipped.
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schedule (4A)C(2B(2C)BC)(2BC) for this SDF graph. We can tabulate the offsets for every buffer

access in the program to examine the access patterns for each CCSS. Such a tabulation is shown

in table 1, assuming that static buffers of length 12 and 6 are used for arcs Α↑B and B↑C respec-

tively. The access port column specifies the different node-arc incidences in the SDF graph. For

example A → A↑B refers to the connection of actor A to the input of arc A↑B (the side without

the arrowhead), and B↑C → C refers to the connection of the output of arc B↑C (the side with the

arrowhead) to actor C. The invocation column lists the firings of the actor with the associated

access port, and the offset at which the ith invocation of this actor references the access port is

given in the ith offset entry for the access port. Examination of table 1 reveals that the members of

CCSS {C4, C7} read from arc B↑C at the same offset. Similarly the write accesses of CCSS’s

{B1, B3} and {B2, B4} occur respectively at the same offsets. If all members of a CCSS X access

an arc α at the same offset, we say that X accesses α statically.

Thus when a pointer into a static buffer is spilled, and the pointer is accessed elsewhere

from within a loop, it is not always necessary to spill the pointer to memory. The procedure for

determining whether a spill is necessary at a given swap point can be conceptualized easily in

terms of the CCSS flow graph, which we introduced in section 2. Suppose that a buffer pointer

access port  invocation offset

A↑B→ B 1 0

2 2

3 4

4 6

5 8

6 10

B → B­↑C 1 3
2 0

3 3

4 0

5 3

6 0

access port  invocation offset

B↑C→ C 1 0

2 2

3 4

4 0

5 2

6 4

7 0

8 2

9 4

A → A↑B 1 0
2 3

3 6

4 9

Table 1. A tabulation of the buffer access patterns associated with the schedule (4A)C(2B(2C)BC)(2BC) for

the SDF graph in figure 3(b).
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memory so that the next time the pointer is used, it can resume from the correct position in the

buffer. With static buffering, we know the offset at which every invocation accesses the buffer.

Thus we can resume the buffer addressing with an immediate value and there is no need to spill

the pointer to memory. The net result is that every time a buffer pointer of the source or sink node

is swapped out, dynamic buffering requires an extra store to memory.

However, looping may limit the savings in overhead for static buffering. For instance,

consider the example in figure 8. It can easily be verified that the repetitions counts for A, B, C, D,

and E are respectively 1, 2, 4, 4, and 4 invocations per schedule period. Since TNSE(B↑C) = 4, a

buffer of size four suffices for static buffering on the arc between B and C. Now the code block for

C must access B↑C through some physical address register R, and R must contain the correct

buffer position Crp every time the code block is entered. If it is not possible to dedicate R to Crp

for the entire inner loop (2DCE), then R must be loaded with the current value of Crp just prior to

entering the code block for C. Since the code block executes C1, C2, C3 and C4  — the members

of the associated CCSS — and each of these invocations accesses the buffer at a different offset,

we cannot load R with an immediate value. R must be obtained from a memory location and the

current value of Crp must be written to this location whenever R is swapped out. It can easily be

verified that at most three samples coexist on B↑C at any given time, and thus a dynamic buffer of

size three could implement the arc. Since the organization of loops precludes exploiting the static

information of a length four buffer, dynamic buffering is definitely preferable in this situation.

It is not always the case, however, that different members of a CCSS access a static buffer

at different offsets. As an illustration of this, consider again the example in figure 3(b), and the

A B C

D E

2 1 2 1

2

1 1

1
1

1

11

Schedule: A(2B(2DCE))

Fig 8. An example of how loops can limit the advantages of static buffering.

D

D
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ing arc α

2. If α has no delay, then static buffering is possible with any buffer size that meets criterion 1.

Otherwise, static buffering is possible if and only if TNSE is a positive-integer multiple of N.

Thus, static buffering for an arc with delay may require additional storage space — 50%

more in the case of the example in figure 7. The difference may be negligible for most buffers, but

it must be kept in mind when sample rates are very high. The storage economy of non-static, or

dynamic, buffering comes at the expense of potential execution-time overhead. When a pointer to

a dynamic buffer is swapped out of its physical register, it is mandatory that its value be spilled to

WR

R W

W R

W R

U1

V1

U2

U3

V2

U V
2 3

D

W R

R W

Fig 7. The effect of delay on the minimum buffer size required for static buffering. With a
buffer size of only 4, the location of the “delay sample” shifts two positions each schedule
period. The schedule in this example is UVUUV.
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then we will occasionally denote α by “source(α)↑sink(α)”. For example U↑V denotes the arc

from U to V in figure 6.

4.2 Static vs. Dynamic Buffering

The first quality of a buffer that should be decided upon is whether or not the buffer is

static. For an SDF arc α, static buffering means that for both source(α) and sink(α), the ith sample

accessed in any schedule period resides in the same memory location as the ith sample accessed in

any other schedule period [23]. From our discussion of figure 6, it is clear that when there is no

delay on α, static buffering can occur with a logical buffer size equal to the maximum number of

live samples that coexist on the arc. However, if α has nonzero delay, then we must impose an

additional constraint that TNSE is some positive integral multiple of the buffer length. A “delay”

on α can be viewed simply as an initial sample. In steady state, it can be viewed as data produced

in one schedule period and consumed in the next.

The need for this constraint is illustrated in figure 7. Here, the minimum buffer size

according to the previous rule is four, since up to four samples can concurrently exist on the arc.

Figure 7 shows the succession of buffer states if a buffer of this length is used. Now since there is

a delay on the arc, there will always be a sample in the buffer at the beginning of each schedule

period — this is the first sample consumed by V1. For static buffering, we need this delay sample

— which is consumed in the schedule period after it is produced — to reside in the same memory

location every period. Comparison of the initial and final buffer states in figure 7 reveals that this

is not the case, since the write pointer W did not wrap around to point to its original location.

Clearly, W could have returned to its original position if and only if the total number of advances

made by W (6, in this case) was an integer multiple of the buffer length. But the total number of

advances made by W is simply TNSE.

We have motivated the following theorem:

Theorem 1: For a given schedule, the logical buffer size N must satisfy the following conditions

 1. N cannot be less than the maximum number of live samples which coexist on the correspond-
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4 A CLASSIFICATION OF BUFFERS

We must determine four qualities of a buffer to guide memory allocation and code genera-

tion — the logical size of the buffer, whether the buffer will be contiguous, whether the accesses

to the buffer are static, and whether the buffer is circular or linear. By the logical size of a buffer,

we mean the number of memory locations required for the buffer if it is implemented as a single

contiguous block of memory. For example, the buffer for the graph of figure 6 will have a logical

size of four or six depending, respectively, on whether or not we are willing to pay the cost of

resetting the buffer pointers before the beginning of every schedule period. In section 5, we will

show that it may often be desirable to implement a buffer in multiple nonadjacent segments of

physical memory. We will also show, however, that in such cases, the logical buffer size parame-

ter is still important for guiding the memory allocation process.

4.1 Terminology

We digress briefly to introduce some definitions and notation that will be used frequently

throughout the rest of this paper.

We use the following notation to express the parameters of an SDF arc α:

• source(α) = the source node of α.

• sink(α) = the sink node of α.

• p(α) = the number of samples produced onto α each time source(α) is invoked.

• c(α) = the number of samples consumed from α each time sink(α) is invoked.

• delay(α) = the delay on α.

We define the total number of samples exchanged on α — abbreviated TNSE(α) or just

TNSE, when the arc in question is understood — to be the total number of samples produced onto

α by source(α) during a schedule period, or equivalently the total number of samples consumed

from α during a schedule period. Finally, if α is the only arc directed from source(α) to sink(α),
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Observe also that the pointers R and W can be reset at the beginning of each schedule

period to point to the beginning of the buffer, and thus the access patterns depicted in figure 6

could be repeated every period. This would cause the locations in each buffer’s access to be static

— fixed for every iteration of the periodic schedule — and hence they would be known values at

compile time.

This illustration renders false the previous notion that for static buffering, the total number

of samples exchanged on an arc per schedule period must always be a multiple of the buffer size.

As we will show in the following section, the requirement holds only when there is a nonzero

delay associated with the arc in question.

W R

R W

W R

W R

W R

W R

U1

U2

V1

U3

V2

U V
2 3

Fig 6. An illustration of modulo addressing. This figure shows how the position of samples
in a buffer changes as the firings in a schedule are carried out. The schedule in this exam-
ple is U(2UV). “W” and “R” represent the write pointer for U and the read pointer for V
respectively.
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accesses to be sequential. This addressing mode allows for efficient implementation of circular

buffers, for which indices need to be updated modulo the length of the buffer so that they can

wrap around to the other end. For example, consider the modulo addressing support provided in

the Motorola DSP56000.

 Example 1: In the Motorola DSP56000 programmable DSP, a modifier register MX is associ-

ated with each address register RX. Loading MX with a value n > 0 specifies a circular buffer of

length n + 1. The starting address of the buffer is determined by the value V that is stored in RX.

If we let B denote the value obtained by clearing the log 2[ n + 1 ] least significant bits of V, then

assuming that B ≤ V ≤ (B + n), an autoincrement access (RX)+ updates RX to {B + [(V − B + 1)

mod (n + 1)]}.

Figure 6 illustrates the use of modulo addressing to decrease memory requirements when

sequential buffer access is needed. The schedule U(2UV) would clearly require a buffer of size 6

for iterative access if only linear addressing is available. However, as the sequence of buffer dia-

grams in figure 6 shows, only four buffer locations are required when modulo addressing is used.

W and R respectively denote the write pointer for U and the read pointer for V, and a black circle

inside a buffer slot indicates a live sample — a sample which has been produced but not yet con-

sumed. Note that the accesses of the second invocation of U and the second invocation of V wrap

around the end of the buffer.

B1,B3
C2,C3
C5,C6

B2,B4 C4,C7 B5,B6 C8,C9

Fig 5. The CCSS flow graph associated with the schedule (4A)C(2B(2C)BC)(2BC) for the SDF
graph in figure 3(b).

A1,A2
A3,A4

C1



MODULO ADDRESSING

8 of 53 MEMORY MANAGEMENT FOR SYNCHRONOUS DATAFLOW PROGRAMS

data using the register autoincrement or autodecrement indirect addressing modes, addressing

modes that were designed precisely for this purpose of iteratively stepping through successive

items of data. Here, the outputs of A are stored to successive locations buf and buf+1, and B reads

these values into local register x0 through the autoincremented buffer pointer r2.

We conclude this section by introducing two definitions which will be useful throughout

the remainder of the paper. The first definition provides a mapping from the appearances of actors

in a looped schedule to the firings that they represent. In other words, it maps a code block in the

target program to the set of invocations which it will execute.

Definition 1: Given an SDF graph G, a looped schedule S for G, and a node A in G, a common

code space set, abbreviated CCSS, for A is the set of invocations of A which are represented

by some appearance of A in S.

A CCSS is thus a set of invocations carried out by a given sequence of instructions in pro-

gram memory (code space). For example consider the looped schedule (4A)C(2B(2C)BC)(2BC)

for the SDF graph in figure 3(b). The CCSS’s for this looped schedule are {A1, A2, A3, A4},

{C1}, {B1, B3}, {C2, C3, C5, C6}, {B2, B4}, {C4, C7}, {B5, B6}, and {C8, C9}.

It will be useful to examine the flow of common code space sets. This can be depicted with

a directed graph, called the CCSS flow graph, that is largely analogous to the basic block graph

[1] used in conventional compiler techniques. Each CCSS corresponds to a node in the CCSS

flow graph, and an arc is inserted from a CCSS A to a CCSS B if and only if there are invocations

Ai ∈ A and Bj ∈ B such that Bj is fired immediately after Ai. To illustrate CCSS flow graph con-

struction, figure 5 shows the CCSS flow graph associated with the schedule (4A)C(2B(2C)B-

C)(2BC) for the SDF graph in figure 3(b).

3 MODULO ADDRESSING

Most programmable DSP’s offer a modulo addressing mode, which can be used in con-

junction with careful buffer sizing to alleviate the memory cost associated with requiring buffer
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firing sequence X1 X2 … XM. These compact representations of the two schedules reveal that

they are two distinct nested loop organizations for the same graph. It is important for a scheduler

to recognize this distinction because the buffering requirements may vary significantly. In this

case, for example, the former schedule requires 27 words of data memory and the latter schedule

requires 21.

 In [2], we discuss the problem of scheduling SDF graphs to effectively synthesize looping

from iteration. When there is a large amount of iteration, these techniques may be crucial to

reducing the code-space requirements to a level that will allow the program to fit on-chip. Thus

we must examine the code-generation aspects of having loops in the target code.

The primary code generation issue for loops is the accessing of a buffer from within a

loop. The difficulty lies in the requirement for different invocations of the same actor to be exe-

cuted with the same block of instructions. As a simple example, consider figure 4, which shows a

multirate SDF graph, a looped schedule for the graph, and an outline of Motorola DSP56000

assembly code that could efficiently implement this schedule. In the code outline, the statement

“do #N LABEL” specifies N successive executions of the block of code between the “do” state-

ment and the instruction at location LABEL. Thus the successive firings of B are carried out with

a loop. This requires that both invocations of B must access their inputs with the same instruction,

and that the output data for A be stored in a manner that can be accessed iteratively. This in turn

suggests writing the data produced by A to successive memory locations, and having B read this

A B

2 1
move x0, buf

move y0, buf + 1

move #buf, r2

do #2, LOOPEND

move (r2)+, x0

LOOPEND:

code for “A”

Fig 4. An illustration of compiled code for a looped schedule.

Schedule: A(2B)

outputs in x0 and y0

code for “B”

input in x0
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times per schedule period and B must fire at least twice. It is thus natural to define iteration in

multirate SDF as the change in firing-rate which is manifested by a change in the production and

consumption rates along an arc[20].

In conventional programming languages, the notion of iteration is normally associated

with loops, in which the programmer specifies that a sequence of code is to be repeated some

number of times in succession. However, in SDF there are three mechanisms which force us to

distinguish looping from iteration. The most fundamental reason is that an SDF graph specifies

only a partial ordering on the computations involved. Whether or not repeated firings are invoked

in succession depends on how the graph is scheduled. Second, feedback constraints may restrict

the degree of looping that can be assembled from an instance of iteration. For example, figure 3(a)

shows a multirate SDF graph that consists of a simple feedback loop. The only possible periodic

schedule for this graph is BAB, which offers no opportunity for looping within a single schedule

period. If, however, the delay on the lower arc were transferred to the upper arc, or if the upper arc

were removed, then the sample-rate change between A and B could be translated into the schedule

BBA, which allows a loop to subsume the firings of B. Finally, a cascade of iterations, the SDF

form of nested iteration [20], does not translate into a unique opportunity for nested loops. For

example, two possible schedules for the graph in figure 3(b) are AABBBAABBBCCCCCCCCC.

and AAAABBCCCBBCCCBBCCC. Using the looped schedule notation defined in [2], we can

express these schedules more compactly as (2 (2A) (3B)) (9C) and (4A) (3 (2B) (3C)) respec-

tively. Here each parenthesized term (N X1 X2 … XM) represents N successive invocations of the

A B

D

D

2 1

12

(a)

A B C
3 2 3 2

(b)

Fig 3. Examples that illustrate distinctions between iteration and
looping in SDF.

3D
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Systematically incorporating buffering considerations in the scheduling process is a topic that we

are currently examining.

We begin by reviewing the scheduling and code generation issues involved in effectively

organizing loops in the target code. In section 3 we discuss circular buffers, which play a key role

in multirate buffering. Section 4 presents a classification of buffers based on dataflow properties

and discusses tradeoffs between the different categories. Most buffer-related optimizations apply

only to particular subsets of these categories. The following section examines the problem of

overlaying buffers for compact memory allocation. Section 6 considers optimization opportuni-

ties that apply to modulo buffers. Section 7 describes a class of actors that can be implemented

very efficiently by abandoning their dataflow interpretation and using more intelligent buffering.

Finally, section 8 presents concluding remarks.

Although the techniques in this paper are presented in the context of block-diagram pro-

gramming, they can be applied to other DSP design environments. Many of the programming lan-

guages used for DSP, such as Lucid[30], SISAL[24] and Silage[10] are based on or closely related

to dataflow semantics. In these languages, the compiler can easily extract a view of the program

as hierarchy of dataflow graphs. A coarse level view of part of this hierarchy may reveal SDF

behavior, while the local behavior of the macro-blocks involved are not SDF. Knowledge of the

high-level synchrony can be used to apply “global” optimizations such as those described in this

paper, and the local subgraphs can be examined for finer SDF components. For example, in [7],

Dennis shows how recursive stream functions in SISAL-2 can be converted into SDF graphs. In

signal processing, usually a significant fraction of the overall computation can be represented with

SDF semantics, so it is important to recognize and exploit SDF behavior as much as possible.

2 Multirate Code Generation Issues

If the number of samples produced on an SDF arc (per invocation of the source actor) does

not equal the number of samples consumed (per sink invocation), the source actor or the sink

actor must be repeated, and when the number of samples produced and consumed form a noninte-

gral ratio, both actors must be repeated. For example, in figure 2, actor A must fire at least three
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looping. For example, for the graph in figure 2, (AABCABC) and (AAABCBC) are both permis-

sible periodic schedules. The latter schedule clearly offers simpler looping, however the amount

of memory required to implement the arc between A and B is 50% greater (600 words vs. 400

words). In general, increasing the degree of looping in the schedule significantly increases buffer-

ing requirements [2]. Thus, due to the limited amount of on-chip data memory in programmable

DSPs, it is highly desirable to overlay noninterfering buffers in the same physical memory space

as much as possible. This paper presents ways to analyze the dataflow information to detect

opportunities for overlaying buffers which can be incorporated into a best-fit memory allocation

scheme.

Normally, when an SDF graph G is compiled, the target program is an infinite loop whose

body executes one period of a periodic schedule for G. We refer to each period of this schedule as

a schedule period of the target program. In [22], it is shown that for each node N in G, we can

determine a positive integer q(N) such that every valid periodic schedule for G must invoke N a

multiple of q(N) times. More specifically, associated with each valid periodic schedule S for G,

there is a positive integer J, called the blocking factor of S, such that S invokes every node M

exactly Jq(M) times. Thus, code generation begins by determining q(), selecting a blocking factor

and constructing an appropriate schedule.

Several scheduling problems for SDF and related models have been addressed: construct-

ing efficient multiprocessor schedules is discussed in [27, 29]; Ritz et. al discuss vectorization

[28]; the problem or organizing loops is examined in [2]; and compiler scheduling techniques for

efficient register allocation are presented in [26]. In this paper, we assume that a schedule has

been constructed under one or more of these criteria. In other words, the techniques of this paper

do not interact with the scheduling process — we assume that the schedule is fixed beforehand.

Fig 2. A multirate SDF graph for which looping greatly increases buffering requirements.

A B C
200 300 1 1
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is assembly code for the Motorola DSP56000. The numbers adjacent to the inputs and the output

represent the number of tokens consumed or produced each time the actor is invoked. In this

example, “input1” and “input2” represent memory addresses where the operands to the addition

actor are stored, and “output” represents the location in which the output sample will be buffered.

In figure 1, observe that four instructions are required to implement the addition actor.

Simply augmenting the compiler with a register allocator and a mechanism for considering buffer

locations as candidates for register-residence can reduce the cost of the addition to three, two or

one instruction. The Comdisco Procoder graphical DSP compiler [26] demonstrates that integrat-

ing buffering with register allocation can produce code comparable to the best manually-written

code.

The Comdisco Procoder’s performance is impressive, however the Procoder framework

has one major limitation: it is primarily designed for homogeneous SDF, in which a firing must

consume exactly one token from each input arc and produce exactly one token on every output

arc. In particular, it becomes less efficient when multiple sample rates are specified. Furthermore,

their techniques apply only when all buffers can be mapped statically to memory. In general, this

need not be the case, and we will elaborate on this topic in section 2.

In this paper, we develop compiler techniques to optimize the buffering of multiple sam-

ple-rate SDF graphs. Multirate buffers are often best implemented as contiguous segments of

memory to be accessed by indirect addressing, and thus they cannot be mapped to machine regis-

ters. Efficiently implementing such buffers requires reducing the amount of indexing overhead.

We show that for SDF, there is a large amount of information available at compile-time which can

be used to optimize the indexing of multirate buffers. Also, buffering and code generation for

multirate graphs is complicated by the desire to organize loops in the target code. With large sam-

ple rate changes, failure to adequately exploit iteration may result in enormous code space

requirements or excessive subroutine overhead. In [2], we develop techniques to schedule SDF

graphs to maximize looping. We assume that such techniques are applied and examine the issues

involved when buffers are accessed from within loops. Finally, multirate graphs may lead to very

large buffering requirements if large sample rates are involved. This problem is compounded by
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ing node in the dataflow graph consumes some number of data values (tokens) from each input arc

and produces some number of tokens on each output arc. Dataflow imposes only partial ordering

constraints, thus exposing parallelism. In Synchronous Dataflow (SDF), the number of tokens

consumed from each input arc and produced onto each output arc is a fixed value that is known at

compile time [23].

Another significant benefit of SDF is the ease with which a large class of signal processing

algorithms can be expressed [3], and the effectiveness with which SDF graphs can be compiled

into efficient microcode for programmable digital signal processors. This is in contrast to conven-

tional procedural programming languages, which are not well-suited to specifying signal process-

ing systems [10]. However, there are ongoing efforts towards augmenting such languages to make

them more suitable; for example, [18] proposes extensions to the C language.

 There have been several efforts toward developing compiler techniques for SDF and

related models[11, 21, 26, 27, 28]. Ho [16] developed the first compiler for pure SDF semantics.

The compiler, part of the Gabriel design environment [21], was targeted to the Motorola

DSP56000 and the code that it produced was markably more efficient than that of existing C com-

pilers. However, due to its inefficient implementation of buffering, the compiler could not match

the quality of good handwritten code, and the disparity rapidly worsened as the granularity of the

graph decreased.

The mandatory placement of all buffers in memory is a major cause of the high buffering

overhead in Gabriel. Although this is a natural way to compile SDF graphs, it can create an enor-

mous amount of overhead when actors of small granularity are present. This is illustrated in figure

1. Here, a graphical representation for an atomic addition actor is placed alongside typical assem-

bly code that would be generated if straightforward buffering tactics are used. The target language

Fig 1. An illustration of inefficient buffering for an SDF graph.
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